About condensation, shower domes, shower dome installers and Nuaire Drimaster - a cool solution for NZ moisture conditions.

sation nden Co TRIPLE CH3CK HOME INSPECTIONS INTERN ACH I CE RTIFIE D Inspected once Inspected right
sation nden Co  TRIPLE CH3CK HOME INSPECTIONS INTERN ACH I CE RTIFIE D  Inspected once Inspected right
How to control condensation in your home What is condensation? When warm moist air produced by ordinary household activities such as cooking and bathing hits a cold surface, (e.g. a cold wall or a window) condensation occurs. Unless the moist air can escape to the outside through an open window, air vent or extractor fan, it will always stay in your home moving around until it finds a cold spot where it can condense. Condensation can lead to mould growth which can contribute to problems of asthma and other respiratory diseases. A recent study in Glasgow has proved that Asthma attacks are directly triggered by allergens in the dust mite’s faeces. Most homes have dust mites. Dust mites thrive in conditions where the relative humidity of the air is high, so they flourish in the winter months. If a member of your household suffers from asthma it is very important to keep the home warm and well-ventilated and to steam clean mattresses, bedding and carpets before the onset of winter to control the dust mite population. Insulation G G Condensation occurs on cold spots, so if you can warm up the cold spots you will help to control condensation. Insulating your loft, external walls, and draught proofing doors and windows will reduce the cold spots and make your G house more comfortable cheaper to heat. Find out if you are eligible for a grant for insulation from our leaflet ‘Energy Efficiency Grants and Offers for Households’. Heating G Try and avoid cold areas in the home. It is better to heat the whole home to a lower temperature rather than one room to a very high temperature. When you get condensation and mould forming, it is often not in the room where you are making the moisture, e.g. the kitchen, but in a room you don’t often use like the spare bedroom. This may be because this room is not usually heated. Try heating all the rooms regularly. G Make sure you are using the heating system and controls efficiently as this will save you money and enable you to afford to heat more of your home. Reducing moisture Reducing moisture in the home will cut down the amount of condensation. How much moisture do you make in your home? Drying clothes produces 10 pints (6lbs of spun washing in an unvented tumble dryer) Washing clothes produces 1 pint.
How to control condensation in your home What is condensation  When warm moist air produced by ordinary household activiti...
G G If you use a tumble dryer make sure it is vented to the outside. Don’t dry clothes indoors if possible. If you have to, open the window and shut the door of the room where the clothes are drying as this will let the moisture from the wet clothes go outside rather than circulate around your home. Using a paraffin or bottled gas heater for 5 hours produces 3 pints of moisture G Avoid using portable gas and paraffin heaters. These fuels give off a lot of moisture when they burn so open a window in the room where the heater is if you have to use one. Using LPG heaters is prohibited in LBTH homes for health & safety reasons. G They are expensive to run they cost about 7- 9p per hour to use, compared to a mains gas fire which costs 2 - 3p per hour. Ventilation Ventilating your home adequately, by opening windows a little, using extractor fans or vents provided, will allow moisture to escape to the outside. Having a bath produces 2 pints of moisture G Use an extractor fan in the bathroom if you have one when you have a bath or shower to let the moisture out. G Keep the bathroom door G G G shut when in use to stop moisture moving around your home Try putting cold water in the bath before adding hot – no steam is created this way! If you have a combination boiler, experiment with the water thermostat at the boiler to get it to a useable temperature without the need to add cold water. Leave the windows slightly open for half an hour after bathing to get rid of the moisture. Remember to shut them afterwards! Cooking by gas for 3 hours produces 3 pints of moisture G Use the extractor fan or open the window in the kitchen when cooking to let the moisture out. G Cover boiling pans with pan lids - this will save on your fuel bills as well as reducing moisture. G Close the kitchen door when cooking as this stops the moisture moving around your home G If you have trickle vents above the windows, keep them open and don’t block up any air vents G If you can fit a Mechanical Ventilation with Heat Recovery (MVHR) fan it will be easier to ventilate properly without causing heat loss. Speak to your Energy Advisor if you want more information about MVHR
G G  If you use a tumble dryer make sure it is vented to the outside. Don   t dry clothes indoors if possible. If you have...
Service & Maintenance: Condensation • About Condensation • Tips for Controlling Humidity and Condensation • Frequently Asked Questions • Sources © 2008 Pella Corporation 1 www.pella.com
Service   Maintenance  Condensation      About Condensation     Tips for Controlling Humidity and Condensation     Frequen...
condensation: What is it? Introduction Moisture on windows and doors is commonly referred to as condensation. While it can be concerning or frustrating, the good news is you can minimize or prevent condensation by controlling the humidity inside your home. We’re glad to help by providing you with information and resources. Roomside Condensation Condensation on the interior of windows and doors is not caused by the window or door product. Condensation is the result of high humidity levels in your home. Air with high humidity holds water vapor until it comes into contact with a surface temperature less than or equal to the dew point (the temperature at which air becomes saturated and produces dew). Because glass surfaces are usually the coldest part of the home, condensation appears on windows first, generally in the form of water droplets or frost on the roomside of your window. As interior air becomes drier or as the glass surface becomes warmer, condensation begins to dissipate. Replacing drafty windows and doors or installing a new roof or siding reduces air infiltration into your home making it tighter. Because a tighter home retains more humidity, condensation on colder surfaces in the home may occur more frequently than before the changes in the construction. Conditions which cause Condensation Inside Temperature: 70° F Humidity: 40% Dew Point: 44° F Conditions which prevent Condensation Outside Inside Air Temperature: 0° F Temperature: 70° F Humidity: 30% Dew Point: 37° F Glass Temperature: 43° F Outside Air Temperature: 0° F Glass Temperature: 43° F • Humidity is at recommended amount. • Lower humidity also lowers dew point. • No Condensation on interior glass because glass temperature is above dew point. • Humidity is higher than recommended amount. • High humidity causes dew point to be higher. • Condensation appears on interior glass because glass temperature is below dew point. Maximum Recommended Humidity Levels Outside Temperature Inside Humidity 20° F to 40° F Not over 40% 10° F to 20° F Not over 35% 0° F to 10° F Not over 30% -10° F to 0° F Not over 25% -20° F to -10° F Not over 20% -20° F or below Not over 15% Based on engineering studies at 70° F conducted at the University of Minnesota Laboratories. © 2008 Pella Corporation 2 www.pella.com
condensation  What is it   Introduction Moisture on windows and doors is commonly referred to as condensation. While it ca...
condensation: What is it? Exterior Condensation Exterior condensation generally occurs in the summer months. It is caused by three main conditions: high outdoor humidity, little or no wind and a clear night sky. It forms in the same way as roomside condensation when the temperature of the glass is cooled below the dew point of the outside air (as opposed to inside air in roomside condensation). To combat exterior condensation, open window coverings at night to warm up exterior glass and remove or trim shrubbery near windows or doors to promote air circulation. Increasing the air conditioner setting by a couple degrees warmer might also help. Triple-pane Low-E Insulated Glass with Argon Outside Air Temperature: 50° F Dew Point: 48° F Double-pane Clear Insulated Glass Inside Outside Air Temperature: 70° F Air Temperature: 50° F Dew Point: 48° F Glass Temperature: 47° F Inside Air Temperature: 70° F Glass Temperature: 55° F • Heat loss to the night air and sky cools outside glass. • Energy efficient window keeps heat inside the home so exterior glass stays cool. • Condensation appears because exterior glass temperature is below dew point. • Heat loss to the night air and sky cools outside glass. • Non-energy efficient window allows heat from inside the home to warm up exterior glass. • Condensation does not appear because exterior glass temperature is above dew point. Between-the-Glass Condensation Condensation between two pieces of Insulated Glass is not controllable and is an indication of glass seal failure. Contact your nearest Pella Service Center for this situation. Effects of Condensation High interior humidity can lead to structural damage to your home and health hazards. Because these effects frequently occur unseen in the wall cavities, attics and crawl spaces, the visible sign of condensation on glass is a good clue humidity levels are too high. Problems like window condensation and musty odors are nuisances while others can be more serious such as water stains on walls and ceilings or structural damage. The important thing to remember is that your windows are trying to tell you to reduce indoor humidity before it causes hidden, costly problems elsewhere in your home. © 2008 Pella Corporation 3 www.pella.com
condensation  What is it   Exterior Condensation Exterior condensation generally occurs in the summer months. It is caused...
Condensation: Prevention Condensation Prevention Quick Tips for Controlling Humidity and Condensation in Your Home Sources of Humidity: Cooking and dishwashing Action Required: Vent stove range hoods to the outside, cover cooking pots to reduce steam Showers and baths Vent bathroom exhaust fans to the outside and use fans for at least 15 minutes after taking a shower Ironing, washing and drying laundry Properly vent appliances to the outside, use clothes dryer instead of hanging wet clothes indoors, use exhaust fans Inadequate ventilation of windows Open window coverings and make sure interior doors are left open during the day to allow air circulation; remove inside screens Moisture producing areas Close doors and windows to greenhouse areas, hot tub or pool, cover large aquariums Moist air trapped in attic and crawl space Be sure soffit vents are clear of dirt and debris, seal around indoor light fixtures to prevent warm air rising to the attic; Use vapor barriers to prevent moisture in the soil from rising into the home Furnace Make sure furnace is working properly and serviced regulary. Look into dryer heat sources such as gas or electric furnaces Stale, damp air Groundwater seeping through foundation Excessive humidifier use Indoor plants Damp basement Firewood New wood, plaster, cement, and other building materials © 2008 Pella Corporation Install an Air-to-Air exchanger to vent moist air outside and make sure its openings are not blocked. Don’t cover or deflect warm air registers, don’t close off rooms, open windows slightly to let in cool, dry air Install gutters, flashing and downspouts and channel water away from home’s foundation Monitor humidity levels with hygrometers to keep moisture in air at optimum levels, turn humidifier off or down Circulate air with small fans Run a dehumidifier in the basement to reduce excess moisture Store firewood outside Building materials contain a lot of moisture. The first heating season causes this moisture to flow into the air and settle on cool surfaces. This type of condensation may last a few heating seasons. 4 www.pella.com
Condensation  Prevention  Condensation Prevention Quick Tips for Controlling Humidity and Condensation in Your Home  Sourc...
condensation: FAQ Frequently Asked Questions What is condensation? Condensation is the process of changing a gas into a liquid. As air becomes saturated with too much humidity, it cannot hold the water vapor. Moisture is in the air all around us. When warm, moist air contacts a cooler surface, such as window glass, it cannot hold as much water vapor so it condenses onto the cool surface. Do windows or doors cause roomside condensation? Windows and doors do not cause condensation. Typically the first place condensation can be seen is on window and door glass. Just like your bathroom mirror doesn’t cause condensation after a hot shower and your car windows don’t cause interior frost in the winter when several passengers are in the vehicle; the cooler surface is where it collects. Why does roomside condensation occur? Condensation is water appearing on the roomside of windows and doors because conditions are just right for this to happen. The roomside glass surface temperature is at or below the dew point for the amount of moisture (humidity) in the inside air. When warmer air, which can hold more moisture than cooler air, contacts the cool surface of the glass, the air condenses and squeezes the water out onto the cool surface. What is dew point? The temperature of air at which it can no longer hold all of its water vapor and some of the water must condense into liquid water. What causes excess humidity in the home? Everyday living: Showers, baths, cooking, washing dishes, laundry, dog water bowls and cleaning all add moisture to the air in your home; as much as 4 gallons or more per day in some homes. People even exhale moisture into the air as they breathe. Home construction: Today’s energy efficient, well-insulated homes help hold down heating and cooling costs however, the same building techniques that help block outdoor air from entering our homes also keep moisture from venting to the outdoors Is roomside condensation more likely to occur in certain climates or times of year? In areas where January temperatures average 35°F or less, condensation is more likely to occur. In the summer and fall months, homes pick up moisture from damp air. As the heating season begins and windows are closed, the indoor air will have more moisture, so temporary condensation for the first few weeks is possible. Are there other cases where window condensation is only temporary? Building materials used in new construction or remodeling such as wood, cement, dry wall, plaster and paint contain moisture which is gradually released into the air of the home. This excess moisture can cause condensation but will usually disappear after the first few heating seasons. Homes also absorb moisture during humid summers. This moisture condenses during the first few weeks of heating until the house dries out. Additionally, anytime there are quick and sudden drops in temperature during the heating season, condensation may temporarily appear. Why do I have condensation with my new windows when my old windows did not? Windows do not cause condensation; however, they are an indicator of high humidity levels. The older less efficient windows allowed air to move across the glass by letting air inside or allowing inside air to escape outdoors, preventing the air temperature of the glass from reaching dew point. Why do I have condensation on my windows and my neighbor does not? Indoor temperature, ventilation, air exchange, window coverings and floor plans as well as everyday life can vary from home to home. It is not unusual for a family of four to contribute 15 to 20 pounds of moisture per day to their indoor environment depending on their habits. The typical family of four can produce 12 pounds of moisture per day just breathing. Washing dishes for three meals a day can produce one pound of moisture. One shower can add ¼ pound and there are many other activities or situations where moisture is added to the indoor air. In the same room, why does one window have Roomside condensation and others do not? There are many factors attributing to this phenomenon including any number of the following: Air circulation within the room or home, varying room temperatures, air register location, type of window (Bay or Bow may be colder), window size, glass type (Low-E versus clear), window coverings, window screens, water source closer to one window than another (ie. plants), the direction the windows are facing, elevation of the windows, wind direction, direction of the sun or partial blocking of the sun due to trees, buildings, etc. Continued on next page © 2008 Pella Corporation 5 www.pella.com
condensation  FAQ  Frequently Asked Questions What is condensation  Condensation is the process of changing a gas into a l...
condensation: FAQ Frequently Asked Questions Do window coverings or drapes cause roomside condensation on windows or doors? Drapes and other window coverings do not cause condensation; however, they can contribute to the problem by restricting the flow of air over the glass surface. Therefore, condensation is more likely to occur when drapes are closed and shades are pulled down. How does air circulation impact roomside condensation? Air circulation affects the supply of fresh air to all areas of your home. Poor air circulation within your home will keep the air next to your windows cooler. When air movement is restricted next to a cool surface the air will cool down sooner than well circulated air. As room air temperature decreases, its ability to hold the water vapor decreases. Using the same principle as a defroster in an automobile, supplying fresh air to the glass area slows down the cooling process and reduces condensation. Does the amount of roomside condensation depend on window type? Sometimes; Bay and Bow windows may experience more condensation than other window styles because they are typically installed away from the insulated house wall where inside air circulation is usually more restricted. Bays and Bows could be a few degrees cooler in temperature than other windows in the same room. Insulating between the window head and seat board is recommended to help reduce condensation. In extremely cold climates additional insulation above the head board and below the seat board may also be necessary. Additionally, glass above the checkrail on a single or double-hung window may be a few degrees cooler than the bottom sash because of restricted circulation of interior air. Why does a strip of condensation sometimes form all the way around the roomside of the window? The center of the glass stays warmer than the glass close to the edge. The strip of condensation is NOT an indication the window is leaking air or not functioning correctly. How can humidity cause problems? Excess humidity can create problems; some are just nuisances like condensation on windows, musty smells, others can be more serious such as blistering or peeling paint, damage to insulation, stains on walls and ceiling or structural damage to the home. Will roomside condensation ruin my windows? If condensation issues are not addressed, window problems may appear over time. Why do I still have roomside condensation even though I am running a dehumidifier? The humidity is most likely still too high. There are a variety of reasons condensation may still be appearing including but not limited to; varying air temperature in the home, air circulation, window coverings and other sources of water placing more moisture in the air than the humidifier is removing. What can I do to control roomside condensation? Reduce humidity. See table on page 4 for specific examples. Do windows or doors cause exterior condensation? No, windows and doors do not cause condensation. Exterior condensation is dew; the same condensation you see on car windows, lawns and streets on many mornings. Dew on windows is a natural atmospheric phenomenon, and it doesn’t mean your windows are leaking air or malfunctioning in any way. Actually, exterior condensation is a sign of energy efficiency, indicating the outside pane is thoroughly insulated from the heat indoors Why does exterior condensation occur? Exterior condensation happens when the exterior surface temperature of the glass falls below the dew point of the air. This type of condensation is more likely to occur when outside humidity levels are higher. It typically occurs in the spring and fall when cool nights follow warm days. How can I control exterior condensation? Open the drapes or shades at night, increase the interior temperature a few degrees at night or shield the windows or doors from direct line of sight to the sky using trees, awnings, etc. What does condensation between the glass mean? Condensation between the two sealed panes of insulating glass is an indication of seal failure and the insulating glass will need to be replaced. Condensation behind the Hinged Glass Panel on a Designer Series® window is usually an indication of excess humidity in the home, follow the steps listed above. © 2008 Pella Corporation 6 www.pella.com
condensation  FAQ  Frequently Asked Questions Do window coverings or drapes cause roomside condensation on windows or door...
condensation: Sources Sources http://www.wdma.com http://www.extension.umn.edu http://www.uwex.edu http://www.efficientwindows.org © 2008 Pella Corporation 7 www.pella.com
condensation  Sources  Sources http   www.wdma.com http   www.extension.umn.edu http   www.uwex.edu http   www.efficientwi...
      Assessment of the performance of the  Showerdome™ device       A technical report prepared for  Showerdome Ltd              November 2011      Luke van Dijk    James K Carson    School of Engineering   University of Waikato  j.carson@waikato.ac.nz 
          Assessment  of  the  performance  of  the   Showerdome     device           A  technical  report  prepared  for ...
    Contents    Summary                    1                  3  2 The Showerdome™                4  3 Theory                5    4 Experimental method                 6    5 Results              7  6 Potential energy and financial savings          12  7 Conclusions                  16  References                    17  1 Introduction            Appendix A: Humidity Data‐logger Specifications and Calibration  18  Appendix B: Example calculations  20             
        Contents      Summary                                        1                                    3    2  The  Sho...
Summary    Showerdome Ltd (Tauranga, New Zealand) manufacture a device (the Showerdome™)  that traps moisture within a shower cubicle, restricting its release into the bathroom   which  in  turn  greatly  reduces  the  amount  and  likelihood  of  condensation  (and  its  associated  negative  effects)  outside  the  shower  cubicle.  Showerdome  Ltd  approached  the  University  of  Waikato  seeking  an  independent,  quantitative  assessment  of  the  performance  of  their  device  to  support  their  existing  appraisals  which have mainly been qualitative and anecdotal.    Testing  on  the  effectiveness  of  the  Showerdome™  was  carried  out  in  a  domestic  bathroom  in  Tauranga,  New  Zealand  during  December  2010  and  January  2011  (Summer) and also during August and September of 2011 (Winter). The experiments  showed  that  with  a  Showerdome™  installed  the  relative  humidity  within  the  bathroom was largely unchanged during a 5‐15 minute shower. These results have  significant implications for a typical household. The amount of moisture that would  escape during a 15 minute shower in a cubicle that does not have a device such as  the Showerdome™ is of the order of half a standard cup (125 ml). While some of this  water  might  exit  the  home  via  ventilation,  any  which  does  not  escape  will  either  condense  on  surfaces  inside  the  home  or  remain  in  the  air  (increased  humidity).  Condensation serves to accelerate the growth of harmful moulds and bacteria, and  contributes  to  structural  damage.  In  addition,  the  more  humid  the  air  is,  the  more  energy is required to heat it. While the Showerdome™ is not a dehumidifier (i.e. it  does not remove moisture from the air, so it will not reduce background humidity) it  does  prevent  the  shower  from  increasing  the  humidity  of  the  air  and  forming  condensation.     Assuming  that  the  Showerdome™  is  installed  and  used  correctly,  there  is  the  potential  for  significant  energy  savings  to  be  made  (in  the  region  of  hundreds  of  dollars per year, depending on a number of factors), mainly from reduced usage of  electric heaters to dry the bathroom after a shower (or to pre‐heat the bathroom if  the window has been left open to dry it). The Showerdome™ would render extractor  1/20 
Summary      Showerdome  Ltd   Tauranga,  New  Zealand   manufacture  a  device   the  Showerdome       that  traps  moist...
fans and mirror de‐misters largely redundant, which would result in a small energy  savings  in  each  case,  but  would  also  result  in  reduced  capital  costs,  since  their  installation  (particularly  in  the  case  of  the  de‐mister)  would  be  unnecessary.  There  would  also  be  energy  savings  if  the  occupants  of  a  dwelling  stopped  using  heated  towel  rails  as  a  result  of  installing  a  Showerdome™.  Indirect  savings  related  to  reduced maintenance and health‐care costs may also result from the installation of a  Showerdome™.    In  drawing  these  conclusions,  it  must  be  stressed  that  while  a  properly  installed  Showerdome™ will definitely prevent moisture from leaving the shower and causing  condensation  and  fogging  in  the  bathroom,  it  will  not  necessarily  result  in  energy  savings, unless the occupants change their behaviour. If they continue to use heaters,  towel  rails,  extractor  fans  etc.  as  they  did  before  the  installation  of  the  Showerdome™, then clearly there will be no energy savings.  2/20 
fans  and  mirror  de   misters  largely  redundant,  which  would  result  in  a  small  energy   savings   in   each   c...
1 Introduction    Cold damp homes, a particular problem for New Zealand, have a detrimental effect  on residents’ health due to moulds, mildews, mites and harmful microbes that thrive  under such conditions [1,2]. Baths and showers inevitably produce warm moist air,  which in a cold, poorly ventilated house is likely to condense on the surfaces of walls,  ceilings and household chattels. In addition, excessive amounts of condensation can  lead to structural damage as paint peels exposing the wood or wood products that  the building is constructed from, which may then either rot or swell and soften.     Showerdome Ltd (Tauranga, New Zealand) manufacture a device (the Showerdome™)  that traps moisture within a shower cubicle, restricting its release into the bathroom   which  in  turn  greatly  reduces  the  amount  and  likelihood  of  condensation  and  its  associated  negative  effects  outside  the  shower  cubicle.  Showerdome  Ltd  approached  the  University  of  Waikato  seeking  an  independent,  quantitative  assessment  of  the  performance  of  their  device  to  support  their  existing  appraisals  which have mainly been qualitative and anecdotal.    Since the Showerdome™ is a relatively new device, no standard testing procedures  could  be  found.  Instead  a  series  of  experiments  were  performed  (as  described  in  Section  4)  comparing  the  moisture  loss  from  a  shower  with  and  without  the  Showerdome™ in order to assess its effectiveness at trapping moisture. Theoretical  calculations of energy savings were also performed.    The  majority  of  the  work  was  performed  by  Mr  Luke  van  Dijk  who  had  recently  completed  the  academic  components  of  his  Bachelor  of  Engineering  with  Honours  Degree  at  the  University  of  Waikato  and  was  completing  the  final  workplace  experience requirement. Luke was supervised by Dr James Carson, a Senior Lecturer  within the School of Engineering at the University of Waikato.        3/20 
1  Introduction      Cold  damp  homes,  a  particular  problem  for  New  Zealand,  have  a  detrimental  effect   on  re...
  2  The Showerdome™    The Showerdome™ works by isolating the warm, moist air within the shower cubicle,  since if it does not escape the shower, no condensation will form on surfaces within  the bathroom. Also, as the air within the shower is heated, no ‘fogging’ occurs within  the cubicle either.         Figure 1 – Showerdome Ltd's marketing graphic showing how the  device works      Showerdome  Ltd  claim  many  benefits  result  from  the  installation  and  use  of  the  device. These fall into two general categories;  1. Reduced moisture in the bathroom and household  2. Reduced energy use domestically        4/20 
   2    The  Showerdome         The  Showerdome     works  by  isolating  the  warm,  moist  air  within  the  shower  cub...
Within these broad benefits fall many specific claims, which are communicated for  marketing purposes;  • Reduced mould and mildew  • Reduced maintenance  • No condensation upon mirrors  • Dryer environment for towels etc  • No need to extractor fans, heated towel rails, or bathroom heat lamps  • Reduced water temperature used at shower head  • No need to keep bathroom window(s) open  Showerdome  Ltd  bases  these  claims  upon  anecdotal  evidence  from  directors,  and  installers as well as feedback from customers.      3  Theory  3.1 Humidity  At  a  particular  temperature,  air  can  hold  a  certain  amount  of  water,  known  as  its  ‘humidity’.  There  are  three  commonly  used  measures  of  humidity:  the  absolute  humidity is the mass of moisture within the air relative to 1 kg of dry air, the relative  humidity, as the name suggests, measures how close to saturation the air is (misting,  fogging  or  condensation  occurs  once  the  relative  humidity  increases  past  100%),  while the dewpoint is the temperature at which air with a certain absolute humidity  will be saturated [3]. These three measurements are related to each other, and are  often shown on a psychrometric chart, which may be found in a number of reference  books, and on the internet [4].    When  a  shower  sprays  hot  water  through  unsaturated  air  some  of  the  water  evaporates and becomes vapour and the air temperature and humidity increase (the  relative humidity will typically rise to 100%, i.e. the air will be saturated with water).  The  warm,  water‐saturated  air  rises  and,  in  the  absence  of  a  moisture  barrier,  will  escape from the shower cubicle to mix with the surrounding air in the room, thereby  increasing the room’s humidity. If the dew‐point of the air in the room rises above  5/20 
Within  these  broad  benefits  fall  many  specific  claims,  which  are  communicated  for   marketing  purposes        ...
the surface temperature of the walls, ceiling, windows, mirror etc., any air in contact  with these surfaces will be cooled below its dew‐point temperature with the result  that saturated air will release the moisture it cannot hold, which condenses on the  surfaces.  Therefore,  to  prevent  condensation  the  dew‐point  of  the  air  in  the  bathroom must be maintained below the temperature of the air any surface within  the  room.  This  may  be  achieved  either  by  heating  the  room  or  by  restricting  the  amount of moisture being released into it (or a combination of both).     To test the effectiveness of the Showerdome™ as a moisture trap, it is sufficient to  compare  the  relative  humidity  (or  dew‐point)  of  the  air  in  a  bathroom  during  a  shower with and without a Showerdome™ installed.     3.2 Energy ‘consumption’ in a bathroom  Energy  usage  within  bathrooms  is  highly  dependent  on  both  bathroom  design  and  the preferences of the bathroom users, so it is difficult to perform experiments that  will produce results from which meaningful, general conclusions may be drawn. It is  more  practical  and  potentially  more  valuable  to  consider  a  range  of  hypothetical  usage  scenarios  and  how  they  would  be  affected  by  the  installation  of  a  Showerdome™.      4  Experimental method.    Testing  on  the  effectiveness  of  the  Showerdome™  was  carried  out  in  a  domestic  bathroom  in  Tauranga,  New  Zealand  during  December  2010  and  January  2011  (Summer  Trials),  and  then  August  and  July  2011  (Winter  Trials).  A  Showerdome™  was  professionally  installed  into  a  corner  shower  cubicle  (new  seals  were  placed  around  the  doors  as  part  of  the  installation  procedure).  The  bathroom  dimensions  were 2.6 m x 1.75 m x 2.35 m, and it had one window and one door. There was no  extraction fan, and the bathroom window and door were closed during the trials.     6/20 
the  surface  temperature  of  the  walls,  ceiling,  windows,  mirror  etc.,  any  air  in  contact   with  these  surfac...
A trial consisted of recording the air temperature and humidity in the bathroom for  not less than 3 minutes before the shower was turned on (in order to obtain base‐ line temperature and humidity readings) followed by running the shower for not less  than 5 minutes and not more than 20 minutes at a flow‐rate of between 9 and 10.5 L  min‐1  (as  per  EECA  recommendations  [5])  with  the  water  temperature  ranging  between  37  and  40  °C.  The  air  temperature  and  humidity  where  measured  by  a  Jaycar Humidity Logger (Jaycar Cat. # QP6013 [6]) and recorded every 2 seconds. The  humidity sensor was calibrated during the investigation (Appendix A). Summer Trials  were  performed  5  times  with  the  Showerdome™  installed  and  5  times  without  it.  The Winter trials involved 3 trials with and 3 trials without the Showerdome™.      5.  Results  5.1 Summer Trials  Figure 2 shows a plot of the relative humidity in the bathroom with and without a  Showerdome™ on a day the 27th of January 2011.  100 90 Relative Humidity (%) 80 70 60 50 40 30 With Showerdome 20 Without Showerdome 10 0 0 5 10 15 20 Time (min)   Figure 2: Comparison of relative humidity within a domestic bathroom with and  without a Showerdome™ fitted to a shower (27th January 2011)  7/20 
A  trial  consisted  of  recording  the  air  temperature  and  humidity  in  the  bathroom  for   not  less  than  3  min...
  These  results  are  typical  of  the  Summer  Trials  performed  and  show  that  with  the  Showerdome™  in  place  there  was  no  noticeable  change  in  relative  humidity.  Without the Showerdome™ the relative humidity increased from approximately 60 –  65 % to between 90 and 100%.    Figure  3  shows  plots  of  the  air  temperature  and  dew‐point  in  the  room  corresponding to the relative humidity data shown in Figure 2.    30 Temperature (°C) 25 20 15 Air temp - with Showerdome 10 Dew-point - with Showerdome Air temp - without Showerdome 5 Dew-point - without Showerdome 0 0 5 10 15 20 Time (min)   Figure 3: Comparison of air temperatures and dew‐points within a domestic  bathroom with and without a Showerdome™ fitted to a shower (27th January 2011)    Note that although the air temperature had increased from approximately 24 °C to  approximately 27 °C by the time the trial without the Showerdome™ was performed,  the  results  may  still  be  compared,  since  we  are  interested  with  the  dew‐point  temperature  relative  to  the  air  temperature.  As  for  the  relative  humidity  measurements,  there  was  very  little  change  to  the  air  temperature  or  dewpoint  when  the  Showerdome™  was  in  place,  whereas  without  the  Showerdome™  the  8/20 
   These   results   are   typical   of   the   Summer   Trials   performed   and   show   that   with   the   Showerdome ...
dewpoint rose in the same manner as the relative humidity, and approached the air  temperature.  Recall  (Section  3)  that  if  the  dew‐point  temperature  increases  above  the  air  temperature  a  mist  will  form  in  the  air.  Since  the  temperatures  of  the  surfaces  within  the  bathroom  (e.g.  walls,  ceilings,  mirrors  etc.)  will  often  be  lower  than  the  air  temperature  condensation  may  form  (as  was  observed  in  these  experiments) even while the dewpoint is below the air temperature.    5.2 Winter Trials  Since the problem of condensation is more significant during Winter months and the  initial trials were performed during Summer, Further trials were performed in August  and  early  September.  Figure  4  shows  the  relative  humidity  with  and  without  the  Showerdome™  for  trials  performed  on  August  7th  2011  when  the  air  temperature  (dry‐bulb) was approximately 11 °C.    100 90 Relative humidity (%) 80 70 60 50 40 30 20 With Showerdome 10 Without Showerdome 0 0 2 4 6 8 10 12 Time (min)   Figure 4: Comparison of relative humidity within a domestic bathroom with and  without a Showerdome™ fitted to the shower (7th August 2011)    9/20 
dewpoint  rose  in  the  same  manner  as  the  relative  humidity,  and  approached  the  air   temperature.   Recall    ...
The relative humidity plots in Figure 4 are similar to those in Figure 2 in that without  the Showerdome™ the relative humidity within the bathroom rose from between 60  and 70 % to above 90%, while the relative humidity with the Showerdome™ fitted is  lower.     It  is  worth  commenting  on  the  relative  humidity  data  with  the  Showerdome™  installed (Figure 4), since it is not as flat as the Summer Trial data, and contains to  features (‘bumps’ in the curve) that should be explained. The ‘bump’ that occurs at  the start of the trial (up to shortly before the 2 minute mark) most likely corresponds  to a pulse of warmer air coming in (with its associated moisture) with the opening of  the  bathroom  door  as  Luke  van  Dijk  entered  to  start  the  run.  This  ‘bump’  in  the  relative humidity at the start of the run is also seen (to a lesser extent) in the data  without  the  Showerdome™  (Figure  4)  and  was  also  observed  in  other  trials,  along  with corresponding ‘bumps’ in the air temperature data. This initial ‘bump’ was not  observed during the Summer Trials most likely because the temperature difference  between the bathroom and the rest of the house was not nearly as significant, and  hence the opening of the bathroom door would not have resulted in the infiltration  of a significant quantity of air at different temperature or relative humidity.    After  the  2  minute  mark  the  relative  humidity  in  the  bathroom  when  the  Showerdome™ was installed fell to a base‐line of approximately 65 % before rising  slowly  to  about  70  %  once  the  shower  was  turned  on  at  about  the  4  minute  mark  (Figure 4). This gradual rise in relative humidity during the shower was also observed  in  the  other  two  Winter  Trials  with  the  Showerdome™  fitted.  Unlike  the  Summer  Trials, where the relative humidity in the bathroom was largely unaffected with the  Showerdome™  in  place,  Figure  4  shows  a  small  rise  in  relative  humidity  as  the  shower  progresses;  however  it  was  not  significant  in  terms  of  producing  condensation;  in  fact  no  condensation  was  observed  during  the  Winter  Trials  with  the Showerdome™ in place (until the shower door was opened at the end of the run),  whereas  extensive  condensation  was  observed  during  the  trials  that  took  place  without a Showerdome™ installed.     10/20 
The  relative  humidity  plots  in  Figure  4  are  similar  to  those  in  Figure  2  in  that  without   the  Showerdome...
Another ‘bump’ in the relative humidity data with the Showerdome™ installed may  be  observed  at  the  10  minute  mark  (Figure  4).  This  most  likely  corresponds  to  the  shower cubicle door being opened so that the shower could be turned off. Some of  the  saturated  air  within  the  cubicle  would  have  escaped  and  produced  the  noticeable increase in the relative humidity within the bathroom. The fact that this  ‘bump’ was not observed during the Summer trials may be attributed to the fact that  air can hold a lot more water at 25 °C (approximately 20 g water per kg of dry air)  than it can at 11 °C (approximately 8.5 kg water per kg dry air), as may be observed  on a humidity chart [4]. Hence a given mass of water released into the air at 25 °C  will not affect the relative humidity nearly as significantly as it will at 11 °C. Overall  the  data  from  the  Winter  Trials  were  subject  to  greater  measurement  uncertainty  due  to  these  temperature  sensitivities;  however,  they  nevertheless  clearly  indicate  that the Showerdome™ is an effective moisture trap in Winter as well as in Summer.    The  results  shown  in  Figures  2  to  4  have  significant  implications  for  a  typical  household. The amount of moisture that would escape during a 15 minute shower in  a cubicle that does not have a device such as the Showerdome™ is of the order of  half  a  standard  cup  (125  ml),  dependent  on  the  dimensions  of  the  room,  the  duration  of  the  shower  and  the  increase  in  relative  humidity.  While  some  of  this  water  might  exit  the  home  via  ventilation,  any  which  does  not  escape  will  either  condense  on  surfaces  inside  the  home  or  remain  in  the  air  (increased  humidity).  Condensation serves to accelerate the growth of harmful moulds and bacteria, and  contributes  to  structural  damage.  The  more  humid  the  air  is,  the  more  energy  is  required to heat it. While the Showerdome™ is not a dehumidifier (i.e. it does not  remove  moisture  from  the  air,  so  it  will  not  reduce  background  humidity)  it  does  prevent  the  shower  from  increasing  the  humidity  of  the  air  and  forming  condensation.             11/20 
Another     bump     in  the  relative  humidity  data  with  the  Showerdome     installed  may   be   observed   at   th...
  6.  Potential energy and financial savings    As mentioned in Section 3, due to the wide range of possible energy usage scenarios  in New Zealand bathrooms, it is more valuable to perform estimates over a range of  variables  and  conditions  than  to  perform  a  detailed  energy  balance  around  an  individual bathroom.     6.1 Reduced heater usage   Firstly, consider potential cost savings associated with reduced electric heater usage.  During  Autumn,  Winter  and  Spring  household  residents  may  dry  their  bathroom,  either by leaving a window open or by keeping an electric heater running for a time  after  the  shower  has  been  exited  (or  both).  Consider  a  dwelling  occupied  by  four  adults  (e.g.  a  typical  student  flat)  who  each  take  daily  showers.  If  there  is  a  drying  period of 15 minutes after each shower (or in the case where a window has been left  open, a 15 minute pre‐heat time to warm the air in the bathroom), that amounts to  an  hour  of  heating  each  day  during  the  colder  months  which,  potentially,  is  unnecessary. With a Showerdome™ installed there would be no need for this drying  (or pre‐heating) time.    Customer feedback received by Showerdome Ltd. [7] has indicated that some people  report  that  they  don’t  use  their  heater  at  all  with  a  Showerdome™  installed,  since  the warmth of the moisture vapour is retained within the shower cubicle. Taking the  student  flat  example  again,  if  each  occupant  of  the  dwelling  takes  a  15  minute  shower,  and  either  a  15  minute  drying  or  bathroom  pre‐heating  time,  potentially  two  hours  of  heater  usage  a  day  could  be  saved  if  a  Showerdome™  was  installed.  While not entirely implausible, this example of the student flat risks over‐stating the  energy savings. Table 1 shows a range of scenarios, where energy savings are related  to reduced electric heater usage (for any reason) and the power consumption of the  heater (see Appendix B for example calculations).     12/20 
   6.    Potential  energy  and  financial  savings      As  mentioned  in  Section  3,  due  to  the  wide  range  of  po...
Reduced annual energy consumption (kWh) Heater power consumption (kW) Reduced heating time  (h) 0.5 1 1.2 2 0.25 46 91 110 183 0.5 91 183 219 365 0.75 137 274 329 548 1 183 365 438 731 1.25 228 457 548 913 1.5 274 548 657 1096 1.75 320 639 767 1278 2 365 731 877 1461 2.4 219 438 657 877 1096 1315 1534 1753   Table 1: Potential energy savings from reduced electric heater usage due to the  installation of a Showerdome™.  A corresponding array of potential dollar savings is shown in Table 2 (where power is  priced at $0.237/kWh).    Reduced annual energy cost ($), assuming electricity costs $0.237/kWh Reduced heating time  Heater power consumption (kW) (h) 0.5 1 1.2 2 2.4 0.25 11 22 26 43 52 0.5 22 43 52 87 104 0.75 32 65 78 130 156 1 43 87 104 173 208 1.25 54 108 130 216 260 1.5 65 130 156 260 312 1.75 76 151 182 303 364 2 87 173 208 346 416     Table 2: Potential dollar savings from reduced electric heater usage due to the  installation of a Showerdome™.    It is not uncommon for bathroom heaters to have power consumptions of 2 kW or  2.4kW, and in such cases, Table 2 shows that a reduction of on average half an hour  per  day  can  result  in  savings  in  the  region  of  $100/year  (the  student  flat  scenario  considered earlier would be in the region of $400/year). (It is reiterated that these  figures  are  indicative  estimates  only,  and  have  not  actually  been  measured  in  any  way.)     13/20 
Reduced  annual  energy  consumption   kWh  Heater  power  consumption   kW  Reduced  heating  time    h  0.5 1 1.2 2 0.25...
6.2 Reduced, extractor fan, and mirror de‐mister usage  In addition to reduced power consumption from electric heaters, the Showerdome™  has  the  potential  to  reduce  energy  consumption  from  other  sources.  For  example,  extractor  fans  may  not  be  required,  and  mirror  de‐misters  would  largely  be  redundant. However, the power consumption of fans (20 – 50 W) is small compared  to  the  power  consumption  of  heaters,  and  even  if  the  usage  of  a  50W  fans  was  decreased by 2 hours per day over an entire year, the energy savings would amount  to less than $10/year.     Mirror de‐misters ($200W/m²) are probably more common in hotels than in homes,  but  regardless  of  where  it  is  used  the  energy  consumption  of  the  de‐mister,  while  greater  than  that  of  an  extractor  fan,  will  still  amount  to  tens  of  dollars  per  year,  rather than hundreds of dollars. However, since the Showerdome™ makes the mirror  de‐mister  redundant,  the  greatest  savings  (dependent  on  the  price  difference  between the de‐mister and the Showerdome™) might come from the removal of the  need to install the de‐mister in the first place – perhaps a serious consideration for a  hotel.    6.3 Heated Towel Rails  While  the  necessity  of  the  extractor  fan  or  mirror  de‐mister  is  greatly  reduced  or  completely removed by the Showerdome™, heated towel rails would not be affected  as  definitely.  The  Showerdome™  will  keep  the  bathroom  drier,  which  in  turn  will  allow towels to dry faster; however, if people appreciate the warmth of a towel as  much as they appreciate the fact that it is dry, it seems reasonable to assume they  will  probably  still  use  one  even  with  the  installation  of  a  Showerdome™.  But  if  a  dwelling does stop using heated towel rails as a result of installing a Showerdome™,  indicative values of the savings can be seen from Table 3, depending on the power  consumption and time of usage.    14/20 
6.2  Reduced,  extractor  fan,  and  mirror  de   mister  usage   In  addition  to  reduced  power  consumption  from  ele...
Reduced annual energy consumption (kWh) Reduced Towel Towel Rail Power Condumption (kW) Rail Usage (h/day) 0.08 0.15 0.2 1 29 55 73 2 58 110 146 6 175 329 438 12 351 657 877 24 701 1315 1753 Reduced annual energy cost ($), assuming electricity costs $0.237/kWh 1 7 13 17 2 14 26 35 6 42 78 104 12 83 156 208 24 166 312 416     Table 3: Potential energy and dollar savings if heated towel rails are no longer used  as a result of the installation of a Showerdome™.    It is clear from Table 3 that if a dwelling stops using a heated tower real as the result  of  installing  a  Showerdome™  to  the  savings  will  be  comparable  to  those  from  reduced heater usage, particularly if the towel rail is left on 24 hours/day throughout  the year.    6.4 Indirect savings  The  estimated  savings  from  reduced  usage  of  electrical  appliances  is  relatively  straightforward  to  calculate;  however,  the  indirect  savings  associated  with  drier  bathrooms  may  potentially  be  greater.  The  two  main  areas  are:  firstly  reduced  maintenance  costs  such  as  painting  and  cleaning,  or  even  replacement  of  timber  framing or other components, and secondly reduced medical expenses from treating  health problems caused by damp homes [1]. Without performing a survey of homes  with and without Showerdome™ devices installed, it is difficult to put any numerical  values on the potential savings, but householders who have lived in their home for  more than a year will probably be able to gauge the significance of the problem of  dampness, and hence the value to be gained from the Showerdome™.      15/20 
Reduced  annual  energy  consumption   kWh  Reduced  Towel Towel  Rail  Power  Condumption   kW  Rail  Usage   h day  0.08...
  7 Conclusion    The experiments showed that with a Showerdome™ installed the relative humidity  within  the  bathroom  was  largely  unchanged  during  a  10  minute  shower  (with  the  exception of the shower door being opened during Winter), meaning that the device  was effective at preventing warm moist air escaping from a shower cubicle, which in  turn  meant  that  no  condensation  or  fog  formed  in  Summer,  and  minimal  ‘fogging’  occured  in  Winter.  Since  condensation  serves  to  accelerate  the  growth  of  harmful  moulds and bacteria, and contributes to structural damage, and since energy costs  increase  with  increased  air  humidity,  the  Showerdome™  would  be  a  worthwhile  investment  because  it  prevents  these  things  from  happening  as  the  result  of  using  the shower.     Assuming  that  the  Showerdome™  is  installed  and  used  correctly,  there  is  also  the  potential  for  significant  energy  savings  to  be  made  (in  the  region  of  hundreds  of  dollars per year, depending on a number of factors), mainly from reduced usage of  electric heaters to dry the bathroom after a shower (or to pre‐heat the bathroom if  the window has been left open to dry it). The Showerdome™ would render extractor  fans and mirror de‐misters largely redundant, which would result in a small energy  savings  in  each  case,  but  would  also  result  in  capital  cost  savings,  since  their  installation  (particularly  in  the  case  of  the  de‐mister)  would  be  unnecessary.  There  would  also  be  energy  savings  if  the  occupants  of  a  dwelling  stopped  using  heated  towel rails as a result of installing a Showerdome™.     In  drawing  these  conclusions,  it  must  be  stressed  that  while  a  properly  installed  Showerdome™ will definitely prevent moisture from leaving the shower and causing  condensation  and  fogging  in  the  bathroom,  it  will  not  necessarily  result  in  energy  savings, unless the occupants change their behaviour. If they continue to use heaters,  towel  rails,  extractor  fans  etc.  as  they  did  before  the  installation  of  the  Showerdome™, then clearly there will be no energy savings.  16/20 
   7  Conclusion      The  experiments  showed  that  with  a  Showerdome     installed  the  relative  humidity   within ...
References    [1] Butler S., Williams M., Tukuitonga C., Paterson J., (2003) Journal of the New  Zealand Medical Association, 116(1177) (http://www.nzma.org.nz/journal/116‐ 1177/494/)  [2] http://www.consumerbuild.org.nz/publish/maintenance/interior‐dampness.php   [3] Seader, J. D., Henley, E. J. Separation Process Principles 2nd Edition, Wiley, NJ,  2006  [4]http://en.wikipedia.org/w/index.php?title=File:PsychrometricChart‐I.PDF&page=1   [5] http://www.energywise.govt.nz/node/9354   [6] http://jaycar.co.nz/productView.asp?ID=QP6013&keywords=humidity&form  =KEYWORD   [7] O’Reilly, M., Personal Communication, 2010  [8] Rahman, M. S., Food Properties Handbook, CRC Press, Boca Raton, 2009  17/20 
References       1   Butler  S.,  Williams  M.,  Tukuitonga  C.,  Paterson  J.,   2003   Journal  of  the  New   Zealand  ...
Appendix A: Humidity Data‐logger Specifications and Calibration    The specifications of the Jaycar humidity sensor/logger are listed below:    • Range: ‐40‐70°C (‐40‐158°F), 0‐100% relative humidity,  • Accuracy: ±1°C (1.8°F), ±3% relative humidity  • Resolution: 0.1°, 0.1% RH  • Memory: 3200 samples  • Battery life: 5 sec rate: 12  months, 10 sec rate: 2.5 years  • Software compatible with Windows 2000, XP & Vista  • Dimensions: 100(L) x 22(W) x 20(H)mm    The  calibrated  by  placing  it  an  sealed  container  which  was  partially  filled  with  a  saturated salt solution within a temperature controlled environment. At equilibrium  the ‘activity’ of the water in the saturated salt solution (which may be determined by  a variety of methods and is widely available in the literature) is equal to the relative  humidity of the air in the space above it. For saturated lithium chloride at 20 °C the  activity (and hence relative humidity) is 11.8 % [9], while for sodium chloride at 20 °C  the activity is 77 % [9]. Figures A1 and A2 show that the humidity sensor agreed with  the literatures values within its specified accuracy of ±3% relative humidity.      Figure A1: Calibration of humidity sensor with saturated   18/20 
Appendix  A   Humidity  Data   logger  Specifications  and  Calibration      The  specifications  of  the  Jaycar  humidit...
lithium chloride (LiCl) at 20 °C    Figure A2: Calibration of humidity sensor with saturated   sodium chloride (NaCl) at 20 °C    19/20 
lithium  chloride   LiCl   at  20    C       Figure  A2   Calibration  of  humidity  sensor  with  saturated     sodium  c...
  Appendix B: Example calculations    The energy savings in Table 1 and the top half of Table 3 were calculated from the  following formula:    Annual energy saving = power rating x average hours of use per day x days per year    For example, the entry in the top right hand corner of Table 1:    219 kWh/year = 2.4 kW x 0.25 h/day x 365.25 day/year    (Note  that  figures  have  been  rounded  and  that  the  number  of  days  per  year  is  365.25 rather than 365 to account for leap years).    The savings in Table 2 and the bottom half of Table 3 were calculated from:    Annual dollar savings = Annual energy saving x cost of electricity unit    For example, the entry in the top right hand corner of Table 2:    $52/year = 219 kWh/year x 0.237 $/kWh      20/20 
   Appendix  B   Example  calculations      The  energy  savings  in  Table  1  and  the  top  half  of  Table  3  were  c...
shower dome Wellington Installers We recommend you contact a trained installer who is able to supply and custom fityour Showerdome. • Bathroom Solutions - Wellington distributor & stockist • Absolutely Maintenance Ltd - Wellington wide • Shower Solutions - Wellington wide • Odd Job Paul - Kapiti / Horowhenua • TL Property Maintenance - Wellington wide • Dolphin Showers & Bathrooms Ltd - Paraparaumu • TradeSkills - Hutt Valley • TradeSkills - Wellington Retailers You are also able to purchase a Showerdome from the following retail outlets: • Bathroom Solutions - Wellington distributor & stockist • Chesters Plumbing & Bathroom • Dolphin Showers & Bathrooms Ltd - Paraparaumu • Mico Bathrooms • Mitre 10 Mega - Petone • Mitre 10 Mega - Upper Hutt • Mitre 10 - Wainuiomata • Mitre 10 - Levin • Mitre 10 - Otaki • Mitre 10 - Waikanae • Mitre 10 - Paremata • Mitre 10 - Crofton Downs
shower dome  Wellington Installers We recommend you contact a trained installer who is able to  supply  and  custom    tyo...
DRIMASTER ANTI-CONDENSATION UNIT Condensation dampness is more common than you think, particularly in older homes. As winter sets in and the temperature starts to drop many of us will notice the problem more. PIV How does it work? CREATES A HEALTHY LIVING ENVIRONMENT NO NEED TO OPEN WINDOWS TO VENTILATE Significantly improves indoor air quality by removing indoor air pollutants such as carbon monoxide and keeping out external pollutants such as traffic fumes and pollen. Clean, fresh air is continuously drawn in through the lofts natural leakage points, passed through the filters and fed into the property via a central hallway diffuser. MOISTURE AND CONDENSATION ARE DRIVEN OUT The filtered air gently pressurises the home from inside out, forcing out the stale air. The Drimaster Anti-Condensation Unit offers a ventilation solution for the whole property, using the tried and tested Positive Input Ventilation (PIV) principle, where a small amount of fresh, filtered air is introduced into the home at a continuous rate, encouraging movement of air from inside to outside. This process prevents condensation and removes allergens such as dust mites and the pollutants caused by cooking and cleaning from the air. The results are a fresh and healthy indoor environment in which condensation and mould cannot exist, and where indoor pollutants including harmful Radon gas are kept to a minimum - all great news for allergy sufferers. •  revents condensation dampness. Drimaster reduces the P humidity levels in the air, preventing condensation mould growth and controlling dust-mite allergens. • mproves indoor air quality. Indoor pollutants from cooking and I cleaning are removed, while outdoor pollutants including pollen and radon gas are kept out. •  ealth benefits. Clinically proven to help allergy and asthma sufferers. H •  xtremely low power consumption. Costs around 1p per day to run. E •  asy installation and very low maintenance. Filter clean or E replacement every five years. • 5 Year Warranty. For peace of mind.
DRIMASTER ANTI-CONDENSATION UNIT Condensation dampness is more common than you think, particularly in older homes. As wint...
DRIMASTER ANTI-CONDENSATION UNIT Condensation dampness is more common than you think, particularly in older homes. As winter sets in and the temperature starts to drop many of us will notice the problem more. WHAT WILL HAPPEN IF I DON'T VENTILATE? The average daily moisture production within a home, from everyday activities such as cooking and bathing, is typically around 5-10 litres. Drying clothes indoors and keeping windows closed whilst cooking and bathing, without effective ventilation, will only increase those moisture levels further. High moisture in homes that are not adequately ventilated is of course associated with condensation, dust mites and increased mould spore concentrations, all leading to poor indoor air quality.  DRIMASTER ANTI-CONDENSATION UNIT: FREQUENTLY ASKED QUESTIONS Will it still work if I have closed doors in the house? Yes. There will be gaps around the edges of the doors, which will enable the fresh air to flow throughout the property. Why does the diffuser have to sit in the hallway? The diffuser sits in the hallway as the majority of the rooms are situated off it, allowing the Drimaster to actively pressurise the whole property. Is the Drimaster Suitable for any size house The Drimaster is best suited to properties up to 200m2.  Can anyone install it? A qualified electrician should be more than capable of fitting the Drimaster. Is it cold? The air being brought into the property does come from outside, however warm air lost at ceiling level will be regained via the diffuser. You may notice the air movement, but this is very gentle. Do I need additional loft ventilation? The Drimaster uses natural loft ventilation. To check for this, look for natural daylight in the loft, or feel for natural air movement. If you cannot detect any, you may need to install a roof cowl (or similar) for additional ventilation. What does the heater actually do? The heater will take the chill off the air being brought into the property, making it a comfortable temperature when it is fed into the home. Will I hear it running? No. The Drimaster unit is 'whisper-quiet'. Is it expensive to run? No. The Drimaster costs as little as 1p per day to run.
DRIMASTER ANTI-CONDENSATION UNIT Condensation dampness is more common than you think, particularly in older homes. As wint...
Hints & Tips for Installation Follow the installation and maintenance document supplied with the unit, paying particular attention to; 4 Diffuser frame fixing screws Airflow from two sides 2 Foam strips (supplied) fit on any of the diffuser sides to guide airflow away from a smoke detector and/or obstructions as required. Press on bottom Diffuser plate 1.1.  ventilation; whilst the system is fully automatic its obviously Loft drawing air from the loft and this air has to be replaced. 1.1.1.  loft sealed from the outside will have a detrimental effect on A the DRIMASTER’s efficiency. 1.1.2.  loft floor or room ceilings below which contain unsealed A holes or recessed lighting such as spotlights can allow the air to be drawn from the dwelling and hence re circulate it. Also ensure the loft hatch is sealed airtight. 1.2.  position of the unit’s supply air diffuser in the landing ceiling The should be carefully considered. 1.2.1.  aware of the possibility of asbestos in the ceilings and the Be regulations requiring a test before you cut the hole. 1.3. The position of the unit. 1.3.1.  Units can be installed suspended from the roof joist or mounted on the ceiling joist. 1.2.2.  ite the diffuser so that the airflow from it will be of least S annoyance to the householder. Note: The positioning of the diffuser should be in strict accordance with the table shown below to ensure correct operation:- 1.3.2.  lthough the unit is exceptionally quiet try to keep it away from A ‘over bed’ positions. Airflow from four sides Speed Setting Minimum distance of diffuser from wall 1 100mm 2 155mm 3 400mm 4 625mm 5 850mm 6 1000mm 1.3.3.  he unit is supplied with a pre wired mains to low voltage T power supply and a mains fused spur box, as the unit is to be on at all times for effective ventilation ensure the power supply cannot be manually disrupted. 1.4. Setting to work. 1.4.1.  the DRIMASTER speed appropriate to the size and type of Set property, as detailed in the installation guide supplied with the unit. 1.2.3.  ite the diffuser so that nothing i.e. smoke alarms are within S 1 Metre of it, and that the air doesn’t discharge directly to a wall. 1.2.4.  ormally the diffuser discharges air from all four sides but is N supplied with foam strips to blank any side with the potential for nuisance. (see fig. above right). 2.0 On maintenance None required in the first five years. 3.0 On spares The only replaceable items on a DRIMASTER are the filters and they only after five years, should a control or motor defect arise then complete unit replacement is recommended. Note: If you have a wet room which is not situated off the main hallway, ie an en suite, you may need additional ventilation for these, such as a Nuaire dMEV decentralised extract fan. FOR HOMES WITH LOFTS FOR HOMES WITH NO LOFT Drimaster Drimaster Heat Drimaster 2000 Flatmaster Flatmaster 2000 The Drimaster provides whole house ventilation for two and three storey homes. The Drimaster Heat comes with all the functionality of our Drimaster however has an integral heater to provide heating on cooler days. The Drimaster 2000 comes with an intelligent sensor that will measure when the temperature in the loft is higher than in your home. The system will then boost to provide your home with the heat gained from the loft. Specifically designed for homes without lofts but can be used to ventilate basements and cellars. The Flatmaster 2000 comes with all the functionality of our Flatmaster but with an integral heater to provide heating on cooler days.
Hints   Tips for Installation Follow the installation and maintenance document supplied with the unit, paying particular a...
DRIMASTER I USER GUIDE FOR OCCUPANTS Condensation dampness is more common than you think, particularly in older homes. As winter sets in and the temperature starts to drop many of us will notice the problem more. The Drimaster offers a ventilation solution for the whole property, using the tried and tested Positive Input Ventilation (PIV) principle, where fresh, filtered air is introduced into the home at a continuous rate, encouraging movement of air from inside to outside. This process removes condensation, allergens such as dust mites, and the pollutants caused by cooking and cleaning from the air. The results are a fresh and healthy indoor environment in which condensation and mould cannot exist, and where indoor pollutants including harmful Radon gas are kept to a minimum - all great news for allergy sufferers. WWW.NUAIRE.CO.UK PAGE 1
DRIMASTER  I USER GUIDE FOR OCCUPANTS  Condensation dampness is more common than you think, particularly in older homes. A...
DRIMASTER I USER GUIDE FOR OCCUPANTS I HOW DOES IT WORK? I Located in your loft space, the Drimaster unit will continuously draw fresh air that comes into your home through natural leakage points in the loft space (see 1 & 2 in above diagram). I The air is drawn into the Drimaster through the filters and is gently fed into your home via a diffuser that is located in the ceiling of your central hallway (see 3 in above diagram) I The fresh air drawn into your home will ensure that old, contaminated and moisture-laden air in your home is continuously diluted, displaced and replaced with good quality, fresh air. The result is an environment in which condensation dampness cannot exist, and where allergens and pollutants are kept to a minimum (see 4 in the above diagram). WWW.NUAIRE.CO.UK PAGE 2
DRIMASTER  I USER GUIDE FOR OCCUPANTS I HOW DOES IT WORK   I Located in your loft space, the Drimaster unit will continuou...
DRIMASTER I USER GUIDE FOR OCCUPANTS I WHY DO I NEED A DRIMASTER UNIT IN MY HOME AND HOW WILL IT BENEFIT ME? I Having the unit in your home prevents I Condensation dampness is more common than condensation by keeping moisture levels low you may think, particularly in older homes that and when used correctly, it will protect your are poorly ventilated. Excess moisture is home from mould/damp. produced by every day activities such as bathing, cooking, washing and drying your clothes inside. I Research has shown that preventing moisture in a home can reduce allergic reactions to dust I Condensed water provides the ideal conditions mites and other pollutants that affect those for mould spores already in the air to germinate suffering from respiratory disorders. The correct and grow, damaging your walls, furniture and use and maintenance of your ventilation system clothes and contributing to health problems. will help to achieve this. I The humidity can also increase the number of I The unit will improve your indoor air quality dust mite allergens in the home, which can and create a healthier living environment. aggravate the symptoms of asthma. WWW.NUAIRE.CO.UK PAGE 3
DRIMASTER  I USER GUIDE FOR OCCUPANTS I WHY DO I NEED A DRIMASTER UNIT IN MY HOME AND HOW WILL IT BENEFIT ME   I Having th...
DRIMASTER I USER GUIDE FOR OCCUPANTS I HOW DO I OPERATE THE UNIT? At installation your unit will have been set to run continuously to a level that will adequately ventilate your home for the majority of the day. I The simple answer is you don’t. The unit is designed to run automatically. As house sizes and occupancy levels vary, your Drimaster has 6 speed controls which can be adjusted to exactly suit your home. The appropriate speed control for your home will be selected by your installer. I IF I NEED SOME ADVICE, WHO DO I CONTACT? In the first instance please contact your housing provider or Housebuilder. Nuaire have a team of technical experts on hand to help. Our operating hours are 9am to 5pm Monday to Friday (excluding Bank Holiday`s) contact us on 029 2085 8400 (option 2). When calling Nuaire if possible please check your fan for the serial number located on the fan label. I WHAT MAINTENANCE IS REQUIRED? I To maintain the optimum performance of your Drimaster, the filter must be kept clean and clear. When the filter becomes dirty, the unit does not input as much air into the dwelling, creating the opportunity for condensation and musty smells to become evident. This will be a signal that you need to have the filter checked and replaced/cleaned as necessary. I In terms of maintenance, the Drimaster requires very little attention. A replacement of the filters every 5 years is the only maintenance required. I HOW MUCH DOES A DRIMASTER COST TO RUN? I To run the unit, electrical consumption would (typically) be about 1p per day. However, it should be remembered that the unit is making use of heat at ceiling level which would otherwise be lost. The unit will switch itself into standby mode when temperatures reach such that condensation would not occur within your home e.g during the summertime. WWW.NUAIRE.CO.UK PAGE 4
DRIMASTER  I USER GUIDE FOR OCCUPANTS I HOW DO I OPERATE THE UNIT   At installation your unit will have been set to run co...
Thermal Imaging Moisture Detection / Heat Loss / HVAC / Electrical Inspections inspection & Detection Using FLIR Cameras, Steam inspect buildings of all sizes for water ingress. If you haven’t had thermal imaging included in an inspection, you have not been fully inspected. A thermal camera can check the ceilings inside a building, when it is not possible to access the roof space. Thermal cameras can detect unseen leaks and check if your building is insulated or not. Thermal Imaging Camera’s are present on all inspection and survey work. Environmental Data Temperature, Relative Humidity, Vapour Pressure, Dew Point Inspection & Detection Most building reports will talk about moisture content, but they do not tell you what the content measured was. Without that figure and the environmental data mentioned above, there is no information to put your readings in context, and answer the question “is my building wet?” You won’t know if the reading the inspector got is relevant, and neither will the inspector who can’t or won’t record them. Steam takes full psychometric readings in every inspection. Pre-purchase advice Written plans on how to fix any issues discovered. Correction If you are taking your home to market, you will get two inspections for the price of one. The first will point out things you can fix and remedy before you go to market. It will include estimated costs and include recommendations and stapes of what to fix and how to fix it. If you are in a position to make these fixes, Steam will return and update the inspection to reflect the fixes you have achieved. Applied Structural Drying Removing Moisture after water events Correction With over 500+ call outs to water events and fires, there is no moisture event that Steam has not attended. Steam, as you would expect, own their own specialist drying equipment, which ranges from extraction, dehumidification, air movement to heating systems.
Thermal Imaging Moisture Detection   Heat Loss   HVAC   Electrical Inspections  inspection   Detection Using FLIR Cameras,...
Installed Probe Systems State of the art framing timber moisture detection Verifiable Data / Minimal Property Damage Do you want to prove your home is not a leaky home? Nothing does this better than a n installed probe system. It will save you tens of thousands when you come to sell your home, when you can prove to purchasers your home doesn’t leak and you have the historical data to prove it. External cut outs often condemn houses to expensive re-clads, regardless of the moisture levels discovered, so Steam will never open your cladding with out express written permission from the property owners. Immunodiagnostic Wood Decay Test Another world first from Wellington Detection / Verifiable Data Partnering with a acknowledged world expert in the science of wood decay, Steam are bringing to the market a patented onsite early wood rot detection test, to answer the eternal question “ but, is there dry rot present?” While many Councils are prepared to accept that there may be no “free water” present onsite, everyone wants to know if the wet rot has become dry rot and created structural weakness in surviving building materials. With this solution, building professionals can get an answer onsite in just 2 hours. Liquid Cladding Solution Effective solution for monolithic building systems Correction / Prevention Steam is creating the test protocols for a code marked cladding preparation system, that will extend the life of monolithic cladding systems, and help prevent the cracks and gaps that occur with wind pressure and ground movement in direct fix wall systems. The products utilised are all currently code marked or appraised for New Zealand use, and ageing tests are being conducted in Australia, to provide data for the code marking of the system. Steam is partnering with Seamless Coatings Ltd, Wellington based claddings coatings professionals to bring this solution to the market. Specialist Mould Removal First Responders Correction / Prevention Mould’s a killer, and can dramatically impact on the health of any occupant in a damp or leaky building.While it’s important to diagnose a building suffering from mould growth it is as equally important to be able to remove mould growth efficiently, safely and permanently. Steam’s biggest project in this area to date, has been in the basement of a large government facility, comprising over 300 square metres of continuous mould.
Installed Probe Systems State of the art framing timber moisture detection  Veri   able Data   Minimal Property Damage Do ...
. Steam’s biggest produ. ata in iable d verif Steam’s biggest prokject in this area www.thermal.kiwi eport very r e
.  Steam   s biggest produ.  ata in iable d verif  Steam   s biggest prokject in this area  www.thermal.kiwi  eport very r...